
US008005792B2

(12) Ulllted States Patent (10) Patent N0.: US 8,005,792 B2
Green et a]. (45) Date of Patent: Aug. 23, 2011

(54) SYSTEM AND METHOD FOR MANAGING 6,226,788 B1 * 5/2001 Schoening et a1. 717/107
VERSIONS 0F METADATA 6,289,358 B1 * 9/2001 Mattis et a1. 707/203

6,366,917 B1 * 4/2002 St. John Herbert, III 707/100
_ 6,502,108 B1 * 12/2002 Day et a1. 707/203

(75) Inventors. Russell John Green, San Carlos, CA 6,564,263 131* 50003 Bergman et a1‘ 709/231
(US); Subhransll B9811, Fremont, CA 6,584,476 B1 * 6/2003 Chatterjee et a1. 707/203
(US); Shrikanth Shankar, Mountain 6,718,436 B2 4/2004 Kim et a1.
View, CA (Us); Kumar Rajamani, 6,839,724 B2 * l/2005 Manchanda et a1. 707/203

, 6,915,313 B2 * 7/2005 Yao 707/203

Santa C1ara’.CA(US)’ H_° Chak Hung’ 7,028,057 B1* 4/2006 Vasudevan et a1. 707/203
Redwood C113” CA (Us), Jaebock Lee, 7,092,972 B2 * 8/2006 Kashyap 707/203
Sunnyvale, CA (U S) 7,130,957 B2 * 10/2006 R210 711/3

7,174,372 B1 * 2/2007 Sarkar 709/223

(73) Assignee: Oracle International Corporation, 20033620063538; : ITIIOIIg et a1 arang et a Redwood Shores’ CA (Us) 2003/0110175 A1* 6/2003 Yao 707/100

, , , , , 2003/0120868 A1 * 6/2003 R tal. 711/133
(*) Not1ce: Subject to any disclaimer, the term of this _ Oyer e

patent is extended or adjusted under 35 (Commued)
U.S.C. 154(b) by 307 days.

OTHER PUBLICATIONS
(21) Appl.No.: 11/129,717

Of?ce Action Dated Nov. 24, 2008 for US. Appl. No. 11/129,617.
22 F1 d: M 13 2005

() 1 e ay ’ (Continued)

(65) Prior Publication Data

US 2006/0004886 A1 Jan. 5, 2006 Primary Examiner i Pierre M Vital

_ _ Assistant Examiner * Christopher P Nofal

Related U's' APPhcatm“ Data (74) Attorney, Agent, or Firm 4 Vista IP Law Group, LLP.

(60) Provisional application No. 60/571,361, ?led on May
14, 2004, provisional application No. 60/571,362,
?led 011 May 14, 2004. (57) ABSTRACT

(51) Int CL Versioned metadata alloWs multiple versions of metadata for
G06F 7/00 (200601) a given object to exist concurrently on a system thereby

(52) us. Cl. 707/638 Supporting the Parallel execution Of Operations Which Would
(58) Field of Classi?cation Search 707/1, 2, Otherwise be mutually exclusive Metadata updates are Per

707/4’ 9’ 100’ 102’ 200’ 201’ 203; 709/200’ mitted While other objects maintain access to another version
709/213 of the metadata through a versioning infrastructure. The ver

See application ?le for complete Search history, sioning infrastructure alloWs the creation of neW versions of
metadata, maintains obsolete versions in the system as long as

(56) References Cited they are being used by any object, and deletes the obsolete

U.S. PATENT DOCUMENTS

5,325,523 A * 6/1994 Beglin et a1. 707/200
6,112,024 A * 8/2000 Almondet a1. 717/122

102

104

Is REQ TO
CREATE
NEW

VERSION7

s on FOR
M RECENT

VERSION

W
110

mm) cunREm
zxzclmuu

nzrazsswmwu VERSION

W

versions once they are no longer in use.

27 Claims, 5 Drawing Sheets

iii

/
10E 105

mm WWW

EXECUTION REP?BENTATlON

warms“ miss

11a

m

cams AND 1mm NEW
EXECUTION REFRE5ENYA'HDN

vsnslon

Verihn (m)

US 8,005,792 B2
Page 2

2003/0195866
2003/0212717
2004/0107183
2004/0210582
2004/0210607
2005/0125461
2005/0149583
2006/0020620
2006/0190500
2006/0253497
2006/0259518
2007/0050366

U.S. PATENT DOCUMENTS

A1 * 10/2003
A1 * 11/2003
A1 * 6/2004
A1 * 10/2004
A1 * 10/2004
A1 * 6/2005

A1 * 7/2005
A1 * 1/2006
A1 * 8/2006

A1 * 11/2006
A1 * 11/2006
A1 * 3/2007

Kashvap ..

Mangan

Chatterjee et a1. .
Manchanda et a1.
FilZ

Baskaran et al.

Abali et al. .

Lomet et al.

Long et a1.

Iyer et a1.

Rao et a1.

Bugir et al.

2007/0050382 A1* 3/2007 Bugir et a1. 707/100
707“ 2007/0162486 A1* 7/2007 Brueggemann et al. 707/102

""" "507/203 2007/0297458 A1* 12/2007 Narayanan et al. 370/503
707/2 2008/0005184 A1* 1/2008 Myllyla et a1. 707/200

707/ 9 OTHER PUBLICATIONS
. 707/203

. 707/203 Of?ce Action Dated Jun. 18, 2008 for US. Appl. No. 11/129,617.
~ 707/203 Non Final Of?ce Action Dated May 27, 2009 for US. Appl. No.

~~~~ ~~ 707/102 11/129,617. 

~~~~ ~~ 707/203 Notice of Allowance Dated Nov. 9, 2009 for US. Appl. No. 
~ 707/200 11/129,617.
. 707/201

........ .. 707/9 * cited by examiner

US. Patent Aug. 23, 2011 Sheet 1 015 US 8,005,792 B2

100

RECEIVE /
102 REQ
\ FORA

RESOURCE / 106 / 108

OBSOLETE CREATE NEW
CURRENT EXECUTION

104 EXECUTION REPRESENTATION
REPRESENTATION VERSION

'SCgggTgO YES VERSION
NEW > .

VERSION? I

SEARCH FOR
MOST RECENT 110

VERSION /

Version A

‘112

VERSION
OBSOLETE

?

LINK TO CURRENT
EXECUTION

REPRESENTATION VERSION

/

Fig. 1

114

CREATE AND LINK TO NEW
EXECUTION REPRESENTATION

VERSION

Version (A+1)

116

US. Patent Aug. 23, 2011 Sheet 2 of5 US 8,005,792 B2

FREEABLE 202
DEPENDENT /

20o

\ 204

IS N
‘LAST 0

DEPENDENT
OBJECT 2

RESUME
OTHER
ACTIVITY 214 YES

206

208

IS
OBSOLETE

?

MARK "CAN
BE FREED"

FREE
210 META

\ DATA

US. Patent Aug. 23, 2011 Sheet 3 of5 US 8,005,792 B2

Now Nvm NNm

, w r

bf} @

vow

Sm S _ 8m N5 3m N8

" -L in

US. Patent

1400

Display
141 1

Input
Device
1412

1431

Aug. 23, 2011 Sheet 5 0f 5 US 8,005,792 B2

Fig. 5

Main Storage
Memory ROM Device
1408 1409 1410

Bus 1406

Data Processor(s) Communications
Interface 1407 Interface
1433 1414

1415
Communications
Link

US 8,005,792 B2
1

SYSTEM AND METHOD FOR MANAGING
VERSIONS OF METADATA

CROSS-REFERENCED AND RELATED
APPLICATIONS

This application claims the bene?t of US. Provisional
Application Ser. No. 60/571,361 ?led on May 14, 2004. This
application is related to co-pending US. Application Ser. No.
11/129,617 ?led on May 13, 2005 entitled “System for
Allowing Object Metadata to be Shared BetWeen Cursors for
Concurrent Read Write Access,” Which claims the bene?t of
US. Provisional Application Ser. No. 60/571,362 ?led on
May 14, 2004. These applications are hereby incorporated by
reference in their entireties as if fully set forth herein.

BACKGROUND AND SUMMARY

This invention related to computer systems, more particu
larly to managing versions of metadata.

Versioned metadata alloWs for multiple versions of meta
data for a given obj ect to exist concurrently on a system. This
is required to support the parallel execution of operations
Which Would otherWise be mutually exclusive. For, example,
a system cache can serve as a global repository of cached
metadata for objects such as tables and indexes. When a
request is received to access a resource, the database system
converts the request through compilation into a program unit,
or cursor. When a program unit accesses an object, a lock can

be placed on the metadata for that object. This lock prevents
any changes to the metadata so that the program unit can
execute the desired operation Without mid-execution changes
from other program units that may cause the program unit to
fail or may invalidate the result. This means that long running
program units may lock the metadata for a long period of
time, potentially blocking object changes that cause metadata
updates even if tho se updates Were knoWn to have no affect on
the executing program unit. This inherently limits scalability
and performance as all activity on an object must be com
pleted before that object, and consequently, before its meta
data, can be modi?ed. A solution is required Which Will alloW
programming units to execute While concurrently alloWing
object updates.
One embodiment of managing versions of metadata

includes linking a dependent object for a resource to the most
recent metadata version of the resource, maintaining any
metadata version While in use, and deleting any metadata
version When no longer in use.

In one system embodiment, the versioning infrastructure
includes a search and create process, an aging-out process,
and a dependency mechanism. In another embodiment the
dependency mechanism is not included. The search and cre
ate process manages neW and obsolete versions of metadata.
The aging-out process maintains the obsolete metadata ver
sions in the system While needed. The dependency mecha
nism alloWs a client or another object to declare interest in, or
dependency on, a metadata object. In another embodiment, a
vieWing process alloWs the vieWing of any and/or all active
versions of a metadata. Further details are described beloW in
the detailed description, draWings and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a representation of the search and create process.
FIG. 2 is a representation of the aging-out process.
FIG. 3 is a representation of versioned metadata over time.

20

25

30

35

40

45

50

55

60

65

2
FIG. 4 is a representation of the dependency mechanism

over time.

FIG. 5 is a representation of a system in Which managing
transient versions of metadata takes place.

DETAILED DESCRIPTION OF INVENTION

A system, method, and computer program have been cre
ated Which alloW for the creation and management of ver
sioned metadata. In the folloWing description, for the pur
poses of explanation, one or more embodiments having
speci?c combinations of elements are set forth in order to
provide a thorough understanding of the solution. It Will be
apparent, hoWever, to one skilled in the art that the embodi
ments may be practiced Without these speci?c combination of
elements.

Versioned metadata alloWs an the creation of a neW version
of metadata as needed for execution of an intended operation
that Would otherWise be prohibited. For example, a client can
issue a Write request to modify an object. HoWever, if the
object is in use the metadata Would be locked, preventing
object edits. By alloWing the creation of an additional version
of that object’s metadata, the Write request can execute. In
other Words, by using versioned metadata clients are permit
ted to modify an object even if that object is in use by another
client. Program units using the metadata of a modi?ed object
can maintain access to the previous version of metadata.
One embodiment of managing versions of metadata

includes linking a dependent object to the most recent meta
data version of the resource, maintaining the metadata ver
sion While in use, and deleting the metadata version When no
longer in use.

In one system embodiment, the versioning infrastructure
includes a search and create process, an aging-out process,
and a dependency mechanism. In another embodiment the
dependency mechanism is not included. The search and cre
ate process manages neW and obsolete versions of metadata.
The aging-out process maintains the obsolete metadata ver
sions in the system While needed. The dependency mecha
nism alloWs a client or another object to declare interest in, or
dependency on, a metadata object. In another embodiment, a
vieWing process alloWs the vieWing of any and/or all active
versions of a metadata.
When an operation is requested for an object, the metadata

for the object is accessed. The search and create process
details hoW the appropriate metadata version is accessed.
FIG. 1 depicts a representation of the search and create pro
cess 100 according to one embodiment. For the purpose of
this example, assume that tWo types of requests may be issued
to access the metadata. A ?rst type of request is to create a neW
version of the metadata (e.g., a Write or update operation
request). A second type of request Will not create a neW
version of the metadata but uses the current version (e.g., a
read operation request). The request may identify a resource,
or object, of the system to be operated upon. A request to
access a resource occurs at process action (102). It is deter
mined at process action (104) if the request is a request for a
neW version of the metadata, i.e., a Write request. If the
request is for a neW version, the current version of the meta
data is marked obsolete (106), and a neW version of metadata
is created (108). If it is determined at (104) that the request is
not a request for a neW version of the metadata, i.e., a read
request, then a search (110) is conducted for the most recent
version of the metadata. It is determined at process action
(1 12) if the retrieved metadata version has been marked ob so
lete. If it is determined at process action (112) that the
retrieved metadata version has been marked obsolete, then a

US 8,005,792 B2
3

new version of metadata is created and the request is linked to
the neW version at process action (114). If it is determined at
(112) that the retrieved metadata version has not been marked
obsolete, then it can be assumed that the most recent version
of the metadata has been found, and the process links the
request (116) to the current metadata version.

For example, suppose a request to create a neW partition in
a table Was issued. Process action (104) determines that the
request is a request for a neW version of metadata. The exist
ing version of the table metadata is marked as obsolete (106)
and the neW version of the table metadata based on the modi
?ed table is created (108).

In another example, suppose a client request to select data
in a table is issued. Process action (104) determines that the
request is not a request for a neW version of metadata. Process
action (110) searches for and locates the most recent version
of the table metadata. If the metadata version found is not
obsolete (112), then it is returned to the client.

In another scenario, the metadata version returned in pro
cess action (110) is obsolete. This situation might occur if a
previous operation to create a neW version had failed, but the
operation to obsolete the old previous version has already
been performed. Consequently, a neW metadata version Was
never created but the previous version Was already marked
obsolete. In this case, process action (114) Would then create
a neW metadata version and return it to the client.

Using the search and create process 200, a system can have
multiple concurrent versions of metadata. FIG. 3 is a repre
sentation of concurrent versions of metadata over time
according to some embodiments. For purposes of this
example, the metadata is represented by rectangular struc
tures labeled MDx, Where “x” represent the object that the
metadata describes, such as metadata MDa at t0 302, MDb at
t0 304, and metadata MDa' at t1 322. Each metadata structure
has a “0” or “1” in an inset rectangle in the loWer left corner.
The inset rectangle represents the current version ?ag. A “l”
in the current version ?ag indicates the metadata has not been
marked obsolete, i.e., is current. A “0” in the current version
?ag indicates that the metadata has been marked obsolete.
The structures connected to metadata MDa by double arroW
lines represent objects, linked to the metadata. In this
example, another metadata is linked to metadata MDa, as are
tWo cursors, the ovals C2 306 and C3 308. Although cursors
C2 and C3 are shoWn as ovals and metadata are shoWn as
rectangles, cursors are an example of metadata and may be
shoWn by the same type of draWing element. Cursors having
dashed lines indicate the cursor has completed its operation
and has become freeable. Cursors removed from the draWing
over time indicate the cursor is freed. Cursors added to the
draWing over time indicate a neW client request Was issued
and the resulting cursor Was linked to the metadata. Metadata
shoWn With dashed lined indicates the metadata has become
freeable. Metadata removed from the draWing over time indi
cates the metadata Was no longer needed and has been freed.

In some embodiments, linked objects are tracked using a
dependency mechanism. FIG. 4 is a representation of an
embodiment of the dependency mechanism of versioned
metadata over time. The dependency mechanism provides
data storage devices containing information regarding the
relationship betWeen parent objects and child objects. The
dependency mechanism storage devices are represented by
rectangular structures containing data ?elds. Each parent
object stores dependency information in a Dependency Ref
erence and each child object stores dependency information
in a Dependency Structure. For example, each parent Depen
dency Reference contains a pointer to the Dependency Struc
ture of each child (e.g., cursor or metadata) With Which it is

20

25

30

35

40

45

50

55

60

65

4
linked. Each child Dependency Structure contains a pointer to
the Dependency Reference With Which it is linked. An object
can be both a parent and a child and can therefore have both
a Dependency Reference and a Dependency Structure. This
Will become more clear as the ?gures are explained further.

FIG. 3 and FIG. 4 Will be discussed in the folloWing para
graphs in relation to the creation and linking process shoWn in
FIG. 1.
At time t0, three clients have requested access to object “a”.

For each request the search and create process 100 performs
the folloWing: searches in process action (110) and ?nds
metadata version MDa 302, determines that metadata MDa
302 is not obsolete in process action (112) but is the current
most recent metadata version indicated by the “l” in the
current version ?ag 310, and links the object to the metadata
in process action (116). Metadata MDb 304, and cursors C2
306, and C3 308 are shoWn linked to the current version of
MDa in the representation of an embodiment shoWn in FIG. 3.
At this point there are three child objects MDb 304, C2 306,
and C3 308 acting upon object “a”, and accessing metadata
MDa 302. The three objects Will have access to metadata
MDa until they complete their operation. If another read
request comes in at this time, its object Would also be linked
to metadata MDa 302 as a result of the search and create
process 100.

In another embodiment, MDb 304 and cursor C2 306 are
currently accessing object MDa 302 When another read
request to access object “a” such as cursor C3 308 is received.
Since it is a read request and does not modify the metadata, C3
308 Would share the current version of Mda. In this instance,
cursor C3 308 has not yet accessed object “a” but is in a queue
Waiting to obtain access as indicated by the dashed link 390 to
MDa 302. In other Words, cursor C3 has declared interest in
metadata MDa using the dependency mechanism but is Wait
ing to obtain an active link and begin executing. In yet another
embodiment, nested linking is permitted. For example, MDb
304, C2 306, and C3 308 may have another object linked to
them.

Also at time t0, the Dependency Reference for parent MDa
402 contains pointers 481, 482, and 483 to each of the child
dependency structures: MDb Dependency Structure 404, C2
Dependency Structure 406, and the C3 Dependency Structure
408, respectively. Each of MDb Dependency Structure 404,
C2 Dependency Structure 406, and C3 Dependency Structure
408 contain a pointer, 484, 485, and 486 respectively, to the
MDa Dependency Reference 402 for parent object metadata
MDa.
At time t1, all three objects MDb 314, C2 316, and C3 318

remain linked to MDa 312. The MDa Reference at t1 412 and
child Dependency Structures 414, 416, and 418 remain
unchanged. HoWever, a client requested for a neW version of
metadata such as C4 324, Was received in process action
(104), i.e., a request to modify object “a”. As a result, meta
data version MDa at time t1 312 is marked obsolete in process
action (106) and a neW metadata version MDa' 322 is created
in process action (108). Current version ?ag 320 contains a
“0” shoWing that metadata version MDa 312 is obsolete and
is no longer the current most recent metadata version. Meta
data version MDa' 322 is shoWn at time t1 in FIG. 3 With a “ l ”
in the current version ?ag 326, indicating that metadata MDa'
322 is not obsolete but is the current most recent metadata
version. Since metadata MDa' is the most recent not obsolete
metadata, cursor C4 324 is linked to metadata MDa' 322.
Along With a neW metadata and cursor, also created are neW
parent object MDa' Dependency Reference 422 containing
the pointer to the child C4 Dependency Structure 424, and

