US008005792B2

a2 United States Patent 10) Patent No.: US 8,005,792 B2
Green et al. (45) Date of Patent: Aug. 23,2011
(54) SYSTEM AND METHOD FOR MANAGING 6,226,788 B1* 5/2001 Schoeningetal. ... 717/107
VERSIONS OF METADATA 6,289,358 B1* 9/2001 Mattisetal. 707/203
6,366,917 B1* 4/2002 St. John Herbert, III 707/100
. 6,502,108 B1* 12/2002 Dayetal.ccceceevnnnee. 707/203
(75) Inventors: Russell John Green, San Carlos, CA 6.564.263 BL* 52003 Bergman ct al. .. " 200231
(US); Subhransu Basu, Fremont, CA 6,584,476 B1* 6/2003 Chatterjee et al. . . 707/203
(US); Shrikanth Shankar, Mountain 6,718,436 B2 4/2004 Kimetal.
View, CA (US); Kumar Rajamani 6,839,724 B2* 1/2005 Manchanda etal. 707/203
h \) . 6,915313 B2% 7/2005 YA .ccoovevrrrrirriecennns .. 707/203
Santa Clara, CA (US); Ho Chak Hung, 7,028,057 BL* 4/2006 Vasudevan etal. 707/203
Redwood City, CA (US); Jaebock Lee, 7,092,972 B2* 82006 Kashyap 707/203
Sunnyvale, CA (US) 7,130,957 B2* 10/2006 RAO -.veoveoverververvecrecrecrecnecne 71173
7,174,372 B1* 2/2007 Sarkar 709/223
(73) Assignee: Oracle International Corporation, 20037/6200639’;82 %: 3%88; II:IOHg et al. o ;8;@83
arang et al. .
Redwood Shores, CA (US) 2003/0110175 AL* 6/2003 Yao 707/100
. R R R R 2003/0120868 Al* 6/2003 R« tal. oo 711/133
(*) Notice: Subject to any disclaimer, the term of this . overe
patent is extended or adjusted under 35 (Continued)
U.S.C. 154(b) by 307 days.
OTHER PUBLICATIONS
(21) Appl. No.: 11/129,717
Office Action Dated Nov. 24, 2008 for U.S. Appl. No. 11/129,617.
22) Filed: May 13, 2005
(22) File ay L (Continued)
(65) Prior Publication Data
US 2006/0004886 A1l Jan. 5, 2006 Primary Examiner — Pierre M Vital
L. Assistant Examiner — Christopher P Nofal
Related U.S. Application Data (74) Attorney, Agent, or Firm — Vista IP Law Group, LLP.
(60) Provisional application No. 60/571,361, filed on May
14, 2004, provisional application No. 60/571,362,
filed on May 14, 2004. (57 ABSTRACT
(51) Int.CL Versioned metadata allows multiple versions of metadata for
GO6F 7/00 (2006.01) a given object to exist concurrently on a system thereby
(52) US.CL oo 707/638 supporting the parallel execution of operations which would
(58) Field of Classification Search 707/1,2, otherwise be mutually exclusive. Metadata updates are per-
707/4, 9, 100, 102, 200, 201, 203; 709/200, mitted while other objects maintain access to another version
709/213 of the metadata through a versioning infrastructure. The ver-
See application file for complete search history. sioning infrastructure allows the creation of new versions of
metadata, maintains obsolete versions in the system as long as
(56) References Cited they are being used by any object, and deletes the obsolete

U.S. PATENT DOCUMENTS

5325523 A * 6/1994 Beglinetal. 707/200
6,112,024 A * 8/2000 Almondetal. 717/122

102

104
ISREQTO
CREATE

NEW
VERSION?

SEARCH FOR
MOST RECENT
VERSION

110

LIRS TO CURRENT
REPRESENTATION VERSION

versions once they are no longer in use.

27 Claims, 5 Drawing Sheets

108

OBSOLETE
CURRENT

CREATE NEW
EXECUTION
REPRESENTATION
VERSION

Version I
[23)

14

CREATE AND LINKTO NEW
EXEGUTION REFRESENTATION
VERSION

Version (A1) II

US 8,005,792 B2

2003/0195866
2003/0212717
2004/0107183
2004/0210582
2004/0210607
2005/0125461
2005/0149583
2006/0020620
2006/0190500
2006/0253497
2006/0259518
2007/0050366

U.S. PATENT DOCUMENTS

Al* 10/2003 Longetal.

Al* 11/2003 Kashvap ..
Al* 6/2004 Mangan

Al* 10/2004 Chatterjee et al.
Al* 10/2004 Manchanda et al.

Al* 6/2005 Filz .coovverennnn.
Al* 7/2005 Baskaran et al.

Al* 1/2006 Iyeretal. ...
Al* 82006 Raoetal

Al* 11/2006 Abalietal. .

Al* 11/2006 Lometetal.
Al* 3/2007 Bugiretal.

Page 2
2007/0050382 Al* 3/2007 Bugiretal. ... 707/100
707/1 2007/0162486 Al* 7/2007 Brueggemann et al. 707/102
"""" %07/203 2007/0297458 Al* 12/2007 Narayanan et al. 370/503
' 707/ 2008/0005184 Al* 1/2008 Myllylaetal. 707/200
~~~~~~~~~~ 707/9 OTHER PUBLICATIONS
...... 707/203

. 707/203 Office Action Dated Jun. 18, 2008 for U.S. Appl. No. 11/129,617.
. 707/203 Non Final Office Action Dated May 27, 2009 for U.S. Appl. No.

...... 707/102 11/129,617.
~~~~~~ 707/203 Notice of Allowance Dated Nov. 9, 2009 for U.S. Appl. No.

. 707/200 11/129,617.

...... 707/201
.......... 707/9 * cited by examiner

U.S. Patent

102

104

Aug. 23,2011 Sheet 1 of 5 US 8,005,792 B2
100
RECEIVE /
q REQ
FOR A
RESOURCE / 106 / 108
OBSOLETE CREATE NEW
CURRENT EXECUTION
EXECUTION REPRESENTATION
REPRESENTATION VERSION
ISREQTO ™\ yeg VeRaon
NEW > g :
VERSION? I V(iri?)n
SEARCH FOR
MOST RECENT 110
VERSION /
Version A II
114

112

/

VERSION

OBSOLETE
?

CREATE AND LINK TO NEW
EXECUTION REPRESENTATION
VERSION

Version (A+1)

LINK TO CURRENT
EXECUTION
REPRESENTATION VERSION

Version A II

116

Fig. 1

U.S. Patent Aug. 23,2011 Sheet 2 of 5 US 8,005,792 B2

FREEABLE 202
DEPENDENT |/

200
\\‘ 204
Is
N
LAST °
DEPENDENT
OBJECT ?

RESUME
OTHER
YES ACTVITY | 214
206
YES
IS
LOCKED
?
208 212
IS MARK “CAN
OBSOLETE BE FREED”

?

FREE
210 META

\\\ DATA

US 8,005,792 B2

Sheet 3 of 5

Aug. 23,2011

U.S. Patent

¢ *sf

A

12} 2

] Y e
mom\m ¥0 ‘_.A > an

ave

42

vee

SO

¥0

EBan

13

oce

8lLe

ean

ote

%} 3
|—°—\\

(41
145>

0

AR [

c0e

yOE

ik

A

US 8,005,792 B2

Sheet 4 of 5

Aug. 23,2011

U.S. Patent

12 € 2] 11 03
aouaisyay Kouspuadag QN souasagay Aauspuadaq QN
9o aImonl}S ASuspuadag 6D ovy aInjonng Aduspuadaq gd
@oualejey Aouspuadeg B souassjey Aouspuadeq e 2ouaseyay Aouspuadag BAW
Oy 2injoniis Aouapuadaq vo Yhy eInmpongg ASuspuadaqg vD vZy eInjonis Aduspuadeq v
aJnpnig Aouapuadsq 50 aumonng Aouapuadaq g2
ainnulg Aouapuadag v ainjonng Aosuspuadaq vO ainprug Aouspuadeq +0
70y eJuelgjoy Aduspuadad BaiN Zvp ooualsjay Aouspusded eaiN ¥ oousligjey Aouopusdad BaN
eaualegey Aduspuadea eI\ aouslajoy Aouapuadag eaQiN souale)ay Aouspuadaq ea AN
gty aInponag Aouspuadeq €9 81y 2Inpnag Aouapusdaq £J 8OV oInjonsg Aouspusdsg €0 ot
sousiajey Aouspuaded BQIN soualajey fouapusdaq ean soualajey Aouspuadaq eQW
9fy aInonas Aouapuadaq ¢) 9Ly 2Imonas Aouapuadaqg ¢l 90% @Injonng Aouspuade(¢ [1-14
9ousIajey Aouspuadag eQ aouaisjey Aouspuadaq eq eouasapey fouspuadag eq | Wi _
1214
ey ednpnns Aouspuadeq Gan v ¥ eInonig Aduspusdeq qanw 0y eImponig Aduspuadad GaN
einpnig Aouspuadaqg £9 o
jonug Aouspuadag €2 ainpng Aouspuadag €9
ainpnag Aouapuadaq gd einonng Aouspuadag 29 amnponig Asuapuadag 2o A,A”/ €8y
ainpnng fouspuadad QQW aJnjong Aouspuadaqg qan ainpnng Asuapuadaq A// A4
—
L8y
ZeF doualojay Aouspuadsq EQW Z\p 9oudisley Aoudpusdaqg EAiN 0F 9ouaisjay Aouspuadag eaiN

U.S. Patent

1400

Display
1411

Input
Device
1412

1431

Aug. 23,2011 Sheet 5 of 5 US 8,005,792 B2
Fig. 5
Main Storage
Memory ROM Device
1408 1409 1410
Bus 1406
Data Processor(s) Communications
Interface 1407 Interface
1433 1414
1415
Communications
Link
>
DB

1432

US 8,005,792 B2

1
SYSTEM AND METHOD FOR MANAGING
VERSIONS OF METADATA

CROSS-REFERENCED AND RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Application Ser. No. 60/571,361 filed on May 14, 2004. This
application is related to co-pending U.S. Application Ser. No.
11/129,617 filed on May 13, 2005 entitled “System for
Allowing Object Metadata to be Shared Between Cursors for
Concurrent Read Write Access,” which claims the benefit of
U.S. Provisional Application Ser. No. 60/571,362 filed on
May 14, 2004. These applications are hereby incorporated by
reference in their entireties as if fully set forth herein.

BACKGROUND AND SUMMARY

This invention related to computer systems, more particu-
larly to managing versions of metadata.

Versioned metadata allows for multiple versions of meta-
data for a given object to exist concurrently on a system. This
is required to support the parallel execution of operations
which would otherwise be mutually exclusive. For, example,
a system cache can serve as a global repository of cached
metadata for objects such as tables and indexes. When a
request is received to access a resource, the database system
converts the request through compilation into a program unit,
or cursor. When a program unit accesses an object, a lock can
be placed on the metadata for that object. This lock prevents
any changes to the metadata so that the program unit can
execute the desired operation without mid-execution changes
from other program units that may cause the program unit to
fail or may invalidate the result. This means that long running
program units may lock the metadata for a long period of
time, potentially blocking object changes that cause metadata
updates even if those updates were known to have no affect on
the executing program unit. This inherently limits scalability
and performance as all activity on an object must be com-
pleted before that object, and consequently, before its meta-
data, can be modified. A solution is required which will allow
programming units to execute while concurrently allowing
object updates.

One embodiment of managing versions of metadata
includes linking a dependent object for a resource to the most
recent metadata version of the resource, maintaining any
metadata version while in use, and deleting any metadata
version when no longer in use.

In one system embodiment, the versioning infrastructure
includes a search and create process, an aging-out process,
and a dependency mechanism. In another embodiment the
dependency mechanism is not included. The search and cre-
ate process manages new and obsolete versions of metadata.
The aging-out process maintains the obsolete metadata ver-
sions in the system while needed. The dependency mecha-
nism allows a client or another object to declare interest in, or
dependency on, a metadata object. In another embodiment, a
viewing process allows the viewing of any and/or all active
versions of a metadata. Further details are described below in
the detailed description, drawings and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a representation of the search and create process.
FIG. 2 is a representation of the aging-out process.
FIG. 3 is a representation of versioned metadata over time.

20

25

30

35

40

45

50

55

60

65

2

FIG. 4 is a representation of the dependency mechanism
over time.

FIG. 5 is a representation of a system in which managing
transient versions of metadata takes place.

DETAILED DESCRIPTION OF INVENTION

A system, method, and computer program have been cre-
ated which allow for the creation and management of ver-
sioned metadata. In the following description, for the pur-
poses of explanation, one or more embodiments having
specific combinations of elements are set forth in order to
provide a thorough understanding of the solution. It will be
apparent, however, to one skilled in the art that the embodi-
ments may be practiced without these specific combination of
elements.

Versioned metadata allows an the creation of a new version
of' metadata as needed for execution of an intended operation
that would otherwise be prohibited. For example, a client can
issue a write request to modify an object. However, if the
object is in use the metadata would be locked, preventing
object edits. By allowing the creation of an additional version
of that object’s metadata, the write request can execute. In
other words, by using versioned metadata clients are permit-
ted to modify an object even if that object is in use by another
client. Program units using the metadata of a modified object
can maintain access to the previous version of metadata.

One embodiment of managing versions of metadata
includes linking a dependent object to the most recent meta-
data version of the resource, maintaining the metadata ver-
sion while in use, and deleting the metadata version when no
longer in use.

In one system embodiment, the versioning infrastructure
includes a search and create process, an aging-out process,
and a dependency mechanism. In another embodiment the
dependency mechanism is not included. The search and cre-
ate process manages new and obsolete versions of metadata.
The aging-out process maintains the obsolete metadata ver-
sions in the system while needed. The dependency mecha-
nism allows a client or another object to declare interest in, or
dependency on, a metadata object. In another embodiment, a
viewing process allows the viewing of any and/or all active
versions of a metadata.

When an operation is requested for an object, the metadata
for the object is accessed. The search and create process
details how the appropriate metadata version is accessed.
FIG. 1 depicts a representation of the search and create pro-
cess 100 according to one embodiment. For the purpose of
this example, assume that two types of requests may be issued
to access the metadata. A first type of request is to create a new
version of the metadata (e.g., a write or update operation
request). A second type of request will not create a new
version of the metadata but uses the current version (e.g., a
read operation request). The request may identify a resource,
or object, of the system to be operated upon. A request to
access a resource occurs at process action (102). It is deter-
mined at process action (104) if the request is a request for a
new version of the metadata, i.e., a write request. If the
request is for a new version, the current version of the meta-
data is marked obsolete (106), and a new version of metadata
is created (108). If it is determined at (104) that the request is
not a request for a new version of the metadata, i.e., a read
request, then a search (110) is conducted for the most recent
version of the metadata. It is determined at process action
(112) if the retrieved metadata version has been marked obso-
lete. If it is determined at process action (112) that the
retrieved metadata version has been marked obsolete, then a

US 8,005,792 B2

3

new version of metadata is created and the request is linked to
the new version at process action (114). If it is determined at
(112) that the retrieved metadata version has not been marked
obsolete, then it can be assumed that the most recent version
of the metadata has been found, and the process links the
request (116) to the current metadata version.

For example, suppose a request to create a new partition in
a table was issued. Process action (104) determines that the
request is a request for a new version of metadata. The exist-
ing version of the table metadata is marked as obsolete (106)
and the new version of the table metadata based on the modi-
fied table is created (108).

In another example, suppose a client request to select data
in a table is issued. Process action (104) determines that the
request is not a request for a new version of metadata. Process
action (110) searches for and locates the most recent version
of the table metadata. If the metadata version found is not
obsolete (112), then it is returned to the client.

In another scenario, the metadata version returned in pro-
cess action (110) is obsolete. This situation might occur if a
previous operation to create a new version had failed, but the
operation to obsolete the old previous version has already
been performed. Consequently, a new metadata version was
never created but the previous version was already marked
obsolete. In this case, process action (114) would then create
a new metadata version and return it to the client.

Using the search and create process 200, a system can have
multiple concurrent versions of metadata. FIG. 3 is a repre-
sentation of concurrent versions of metadata over time
according to some embodiments. For purposes of this
example, the metadata is represented by rectangular struc-
tures labeled MDx, where “x” represent the object that the
metadata describes, such as metadata MDa at t0 302, MDb at
10 304, and metadata MDa' at t1 322. Each metadata structure
has a “0” or “1” in an inset rectangle in the lower left corner.
The inset rectangle represents the current version flag. A “1”
in the current version flag indicates the metadata has not been
marked obsolete, i.e., is current. A “0” in the current version
flag indicates that the metadata has been marked obsolete.
The structures connected to metadata MDa by double arrow
lines represent objects, linked to the metadata. In this
example, another metadata is linked to metadata MDa, as are
two cursors, the ovals C2 306 and C3 308. Although cursors
C2 and C3 are shown as ovals and metadata are shown as
rectangles, cursors are an example of metadata and may be
shown by the same type of drawing element. Cursors having
dashed lines indicate the cursor has completed its operation
and has become freeable. Cursors removed from the drawing
over time indicate the cursor is freed. Cursors added to the
drawing over time indicate a new client request was issued
and the resulting cursor was linked to the metadata. Metadata
shown with dashed lined indicates the metadata has become
freeable. Metadata removed from the drawing over time indi-
cates the metadata was no longer needed and has been freed.

In some embodiments, linked objects are tracked using a
dependency mechanism. FIG. 4 is a representation of an
embodiment of the dependency mechanism of versioned
metadata over time. The dependency mechanism provides
data storage devices containing information regarding the
relationship between parent objects and child objects. The
dependency mechanism storage devices are represented by
rectangular structures containing data fields. Each parent
object stores dependency information in a Dependency Ref-
erence and each child object stores dependency information
in a Dependency Structure. For example, each parent Depen-
dency Reference contains a pointer to the Dependency Struc-
ture of each child (e.g., cursor or metadata) with which it is

20

25

30

35

40

45

50

55

60

65

4

linked. Each child Dependency Structure contains a pointer to
the Dependency Reference with which it is linked. An object
can be both a parent and a child and can therefore have both
a Dependency Reference and a Dependency Structure. This
will become more clear as the figures are explained further.

FIG. 3 and FIG. 4 will be discussed in the following para-
graphs in relation to the creation and linking process shown in
FIG. 1.

Attime t0, three clients have requested access to object “a”.
For each request the search and create process 100 performs
the following: searches in process action (110) and finds
metadata version MDa 302, determines that metadata MDa
302 is not obsolete in process action (112) but is the current
most recent metadata version indicated by the “1” in the
current version flag 310, and links the object to the metadata
in process action (116). Metadata MDb 304, and cursors C2
306, and C3 308 are shown linked to the current version of
MDa in the representation of an embodiment shown in FIG. 3.
At this point there are three child objects MDb 304, C2 306,
and C3 308 acting upon object “a”, and accessing metadata
MDa 302. The three objects will have access to metadata
MDa until they complete their operation. If another read
request comes in at this time, its object would also be linked
to metadata MDa 302 as a result of the search and create
process 100.

In another embodiment, MDb 304 and cursor C2 306 are
currently accessing object MDa 302 when another read
request to access object “a” such as cursor C3 308 is received.
Since itis aread request and does not modify the metadata, C3
308 would share the current version of Mda. In this instance,
cursor C3 308 has not yet accessed object “a” but is in a queue
waiting to obtain access as indicated by the dashed link 390 to
MDa 302. In other words, cursor C3 has declared interest in
metadata MDa using the dependency mechanism but is wait-
ing to obtain an active link and begin executing. In yet another
embodiment, nested linking is permitted. For example, MDb
304, C2 306, and C3 308 may have another object linked to
them.

Also at time t0, the Dependency Reference for parent MDa
402 contains pointers 481, 482, and 483 to each of the child
dependency structures: MDb Dependency Structure 404, C2
Dependency Structure 406, and the C3 Dependency Structure
408, respectively. Each of MDb Dependency Structure 404,
C2 Dependency Structure 406, and C3 Dependency Structure
408 contain a pointer, 484, 485, and 486 respectively, to the
MDa Dependency Reference 402 for parent object metadata
MDa.

At time t1, all three objects MDb 314, C2 316, and C3 318
remain linked to MDa 312. The MDa Reference at t1 412 and
child Dependency Structures 414, 416, and 418 remain
unchanged. However, a client requested for a new version of
metadata such as C4 324, was received in process action
(104), i.e., a request to modify object “a”. As a result, meta-
data version MDa at time t1 312 is marked obsolete in process
action (106) and a new metadata version MDa' 322 is created
in process action (108). Current version flag 320 contains a
“0” showing that metadata version MDa 312 is obsolete and
is no longer the current most recent metadata version. Meta-
data version MDa' 322 is shown at time t1 in FIG. 3 witha “1”
in the current version flag 326, indicating that metadata MDa'
322 is not obsolete but is the current most recent metadata
version. Since metadata MDa' is the most recent not obsolete
metadata, cursor C4 324 is linked to metadata MDa' 322.
Along with a new metadata and cursor, also created are new
parent object MDa' Dependency Reference 422 containing
the pointer to the child C4 Dependency Structure 424, and

US 8,005,792 B2

5

child C4 Dependency Structure 424 containing the pointer to
the parent MDa' Dependency Reference 422.

At this point there is a current metadata version MDa' 322,
and an obsolete metadata version MDa 312. Objects MDb
314, C2 314 and C3 318 will maintain access to the obsolete
metadata 312 until each is finished executing, or no longer
needs to access the metadata. Cursor C4 324 will maintain
access to the current metadata version 322 until C4 is finished
executing. No new client requests will obtain access to the
obsolete metadata 312. All client requests will be linked to
metadata MDa'322 by the search and create process 100
(unless another request for a new metadata version is
received). Multiple versions of metadata can be created in this
environment, and each one would be maintained while
needed.

At time 12, objects MDb 334, C2 336 and C3 338 are
finished executing. They are unlocked, and no longer need
access to MDa 332, although they still maintain a dependency
on it. When an object having no dependents is no longer in
use, it is marked freeable. As such, each object linked to MDa
is marked freeable as illustrated in FIG. 3 by the dashed lines
of the child objects MDb 334, C2 336, and C3 338. Since
Objects MDb, C2 and C3 still depend on metadata MDa 332,
they are described as freeable dependents and are subject to
the aging-out process, process 200 shown in FIG. 2. Process
200 is described later. In addition, no new cursors are linked
to version MDa 332 because MDa is not the current metadata
version and it is marked obsolete.

FIG. 3 at time t2 also depicts that a client requested a
resource in search and create process 100 that is not a request
for a new version (104). The resulting child, cursor C5 346 is
linked to metadata version MDa' 342 in process action (116)
because MDa' 342 is the most recent metadata version (110)
that is not obsolete (112). Metadata version MDa' 342 shows
cursor C4 344 remains linked and new cursor C5 346 is
linked. As such, parent Mda' Dependency Reference att2 442
contains pointers for the child cursor C4 Dependency Struc-
ture 444, and the new child cursor C5 Dependency Structure
446. Each of cursor C4 Dependency Structure 444 and cursor
C5 Dependency Structure 446 contain a pointer for the parent
object, MDa' Dependency Reference 442.

At this point metadata Mda' 342, is the most recent meta-
data version, is not obsolete, and has two active dependents,
C4 344 and C5 346. Metadata Mda 332 is obsolete and has no
active dependents. There are three freeable dependents, MDb
334, C2 336, and C3 338 which will be handled by the
aging-out process described further below.

At time t3, version MDa' 362 is shown as the current
metadata version with cursor C5 364 linked. The child C5
Dependency Structure 466 contains the pointer for the parent
MDa' Dependency Reference 462. And the parent MDa'
Dependency Reference 462 contains the pointer for the child
C5 Dependency Structure 466. Cursor C4 364 is no longer
executing and is marked freeable, shown by dashed lines in
FIG. 3. FIG. 4 also shows the pointer to MDa' Dependency
Reference in the C4 Dependency Structure 464 and the
pointer to the C4 Dependency Structure in the MDa' Depen-
dency Reference 462. C4 364 and metadata MDa 352 have
been marked freeable as indicated by the dashed structures.
Children MDb, C2, and C3 have been freed via the aging-out
process 200 as indicated by the removal of them from the
drawing. As such, the MDb, C2, and C3 memory can be
reallocated as needed.

As mentioned previously, dependency structures are used
to track the relationship between parent and child objects. A
Dependency Reference is used by the parent to track each
child object. A child Dependency Structure is used by each

20

25

30

35

40

45

50

55

60

65

6

child to track each parent. The pointers in the dependency
structures indicate interest or dependency. Each version ofthe
metadata remains in the system while any client is interested
in it or dependent on it. FIG. 2 depicts the aging-out process
200 that is triggered upon a dependent becoming freeable. For
example, aging-out process 200 would be triggered in time t2
when objects MDb, C2, and C3 become freeable dependents,
and in time t3 when cursor C4 becomes a freeable dependent.

At time 12, objects MDb, C2 and C3 become frecable
dependents. In this example, assume they become freeable
dependents in written order. The first one to become a freeable
dependent, MDb, will trigger the metadata aging-out process
200 at process action (202). The process determines if the
freecable dependent was the last dependent of the metadata
version in process action (204). Since there are three objects
with a dependency on MDa, the first two times through pro-
cess 200, process action (204) determines that objects MDb
and C2 are not the last dependents and the system will resume
other activities (214). When cursor C3, the third and final
dependent, is marked freeable and goes though the metadata
aging-out process 200, process action (204) determines that it
is the last dependent. Process action (206) determines if the
metadata is locked by any other object. If the metadata is
locked, the system will resume other processing activities
(214). In this example the metadata is not locked by another
object, and so the process continues. Process action (208)
determines if the metadata is obsolete. If it is not obsolete the
metadata is marked “can be freed” in process action (212).
Another object could request a resource and still be linked to
a metadata that is marked “can be freed” because it is still the
most recent metadata version that has not been marked obso-
lete. In this instance, metadata MDa is obsolete, and is freed
in process action (210). Methods for handling freed metadata
resources are performed by the resource allocation subsystem
and are known to those of ordinary skill in the art.

In another embodiment, a viewing mechanism provides a
client a way to view of all metadata versions obsolete or not.
System Architecture Overview

The execution of the sequences of instructions required to
practice the invention may be performed in some embodi-
ments by a computer system 1400 as shown in FIG. 5. In an
embodiment, execution of the sequences of instructions
required to practice the invention is performed by a single
computer system 1400. According to other embodiments, two
ormore computer systems 1400 coupled by a communication
link 1415 may perform the sequence of instructions in coor-
dination with one another. In order to avoid needlessly
obscuring the explanation, a description of only one computer
system 1400 will be presented below; however, it should be
understood that any number of computer systems 1400 may
be employed.

A computer system 1400 according to an embodiment will
now be described with reference to FIG. 5, which is a block
diagram of the functional components of a computer system
1400. As used herein, the term computer system 1400 is
broadly used to describe any computing device that can store
and independently run one or more programs.

Each computer system 1400 may include a communication
interface 1414 coupled to the bus 1406. The communication
interface 1414 provides two-way communication between
computer systems 1400. The communication interface 1414
of a respective computer system 1400 transmits and receives
electrical, electromagnetic or optical signals, that include
data streams representing various types of signal information,
e.g., instructions, messages and data. A communication link
1415 links one computer system 1400 with another computer
system 1400. For example, the communication link 1415 may

US 8,005,792 B2

7

be the internet in which case the communication interface
1414 may be a telephone line, a cable or a wireless modem, or
the communication link 1415 may be a LAN, in which case
the communication interface 1414 may be a LAN card, or the
communication link 1415 may be a PSTN, in which case the
communication interface 1414 may be an integrated services
digital network (ISDN) card or a modem.

A computer system 1400 may transmit and receive mes-
sages, data, and instructions, including program, i.e., appli-
cation, code, through its respective communication link 1415
and communication interface 1414. Received program code
may be executed by the respective processor(s) 1407 as it is
received, and/or stored in the storage device 1410, or other
associated non-volatile media, for later execution.

In an embodiment, the computer system 1400 operates in
conjunction with a data storage system 1431, e.g., a data
storage system 1431 that contains a database 1432 that is
readily accessible by the computer system 1400. The com-
puter system 1400 communicates with the data storage sys-
tem 1431 through a data interface 1433. A data interface
1433, which is coupled to the bus 1406, transmits and receives
electrical, electromagnetic or optical signals, that include
data streams representing various types of signal information,
e.g., instructions, messages and data. In embodiments of the
invention, the functions of the data interface 1433 may be
performed by the communication interface 1414.

Computer system 1400 includes a bus 1406 or other com-
munication mechanism for communicating instructions,
messages and data, collectively, information, and one or more
processors 1407 coupled with the bus 1406 for processing
information. Computer system 1400 also includes a main
memory 1408, such as a random access memory (RAM) or
other dynamic storage device, coupled to the bus 1406 for
storing dynamic data and instructions to be executed by the
processor(s) 1407. The main memory 1408 also may be used
for storing temporary data, i.e., variables, or other intermedi-
ate information during execution of instructions by the pro-
cessor(s) 1407.

The computer system 1400 may further include a read only
memory (ROM) 1409 or other static storage device coupled to
the bus 1406 for storing static data and instructions for the
processor(s) 1407. A storage device 1410, such as a magnetic
disk or optical disk, may also be provided and coupled to the
bus 1406 for storing data and instructions for the processor(s)
1407.

A computer system 1400 may be coupled via the bus 1406
to adisplay device 1411, such as, but not limited to, a cathode
ray tube (CRT), for displaying information to a user. An input
device 1412, e.g., alphanumeric and other keys, is coupled to
the bus 1406 for communicating information and command
selections to the processor(s) 1407.

According to one embodiment of the invention, an indi-
vidual computer system 1400 performs specific operations by
their respective processor(s) 1407 executing one or more
sequences of one or more instructions contained in the main
memory 1408. Such instructions may be read into the main
memory 1408 from another computer-usable medium, such
as the ROM 1409 or the storage device 1410. Execution of the
sequences of instructions contained in the main memory 1408
causes the processor(s) 1407 to perform the processes
described herein. In alternative embodiments, hard-wired cir-
cuitry may be used in place of or in combination with soft-
ware instructions to implement the invention. Thus, embodi-
ments of the invention are not limited to any specific
combination of hardware circuitry and/or software.

The term “computer-usable medium,” as used herein,
refers to any medium that provides information or is usable by

20

25

30

35

40

45

50

55

60

65

8

the processor(s) 1407. Such a medium may take many forms,
including, but not limited to, non-volatile, volatile and trans-
mission media. Non-volatile media, i.e., media that can retain
information in the absence of power, includes the ROM 1409,
CD ROM, magnetic tape, and magnetic discs. Volatile media,
i.e., media that can not retain information in the absence of
power, includes the main memory 1408. Transmission media
includes coaxial cables, copper wire and fiber optics, includ-
ing the wires that comprise the bus 1406. Transmission media
can also take the form of carrier waves; i.e., electromagnetic
waves that can be modulated, as in frequency, amplitude or
phase, to transmit information signals. Additionally, trans-
mission media can take the form of acoustic or light waves,
such as those generated during radio wave and infrared data
communications.

In the foregoing specification, the invention has been
described with reference to specific embodiments thereof. It
will, however, be evident that various modifications and
changes may be made thereto without departing from the
broader spirit and scope of the invention. For example, the
reader is to understand that the specific ordering and combi-
nation of process actions shown in the process flow diagrams
described herein is merely illustrative, and the invention can
be performed using different or additional process actions, or
a different combination or ordering of process actions. The
specification and drawings are, accordingly, to be regarded in
an illustrative rather than restrictive sense.

We claim:

1. A computer implemented method for managing versions
of metadata on a system, the method comprising:

receiving a first set of one or more first requests to operate

on an object, wherein a first metadata version is associ-
ated with the object;
fulfilling the first set of one or more first requests by per-
forming one or more first database operations associated
with the one or more first requests against the object;

while the first metadata version associated with the object
is being maintained for the one or more first requests,
receiving a second set of one or more second requests to
operate on the object, wherein a second metadata ver-
sion is associated with the object,
wherein the first metadata version is obsolete and the sec-
ond metadata version is not obsolete, the first metadata
version and second metadata version concurrently exist
for the object on the system so that the one or more first
requests finish the one or more first database operations
using the first metadata version while the one or more
second requests uses the second metadata version;

fulfilling the second set of one or more second requests by
performing one or more second database operations
associated with the one or more second requests against
the object;

maintaining, by using a processor, the first metadata ver-

sion and the second metadata version with a dependency
reference to track dependent objects accessing the first
metadata version, wherein the act of maintaining com-
prises: marking a state of the first metadata version to
indicate a lack of the dependent objects;

deleting the first metadata version associated with the

object if the state of the first metadata version is marked
so that the first metadata version no longer needs to be
maintained for the first set of one or more first requests to
perform the one or more first database operations asso-
ciated with the one or more first requests; and

storing the second metadata version in a volatile or non-

volatile computer usable medium or displaying the sec-
ond metadata version on a display device.

US 8,005,792 B2

9

2. The computer implemented method of claim 1, further
comprising: linking a dependent object to the second meta-
data version comprises:

determining that at least one of the one or more second

requests is a write request;

modifying a persistent metadata version based at least in

part upon the write request; and

creating a new metadata version based at least in part upon

the modified persistent metadata.

3. The computer implemented method of claim 1, further
comprising: linking a dependent object to the second meta-
data version comprises:

determining that at least one of the one or more second

requests is a read request;

locating the second metadata version for the resource; and

determining that the second metadata version for the

resource is not obsolete.

4. The computer implemented method of claim 1, further
comprising:

linking a dependent object to the second metadata version

comprises:

determining that at least one of the one or more second

requests is a read request; and

creating the second metadata version.

5. The computer implemented method of claim 1, further
comprising:

allocating memory consumed by the second metadata ver-

sion;

determining that the second metadata version is not obso-

lete; and

continuing to use previously allocated memory consumed

by the second metadata version.

6. The computer implemented method of claim 1, further
comprising:

allocating memory consumed by the second metadata ver-

sion;

determining that the first metadata version has no linked

dependent objects;

determining that the first metadata version is obsolete; and

releasing previously allocated memory consumed by the

first metadata version.

7. The computer implemented method of claim 6, further
comprising:

marking a state of the first metadata version to indicate a

lack of linked dependent objects.

8. A system for managing versions of metadata, compris-
ing:

a processor configured for:

receiving a first set of one or more first requests to operate

on an object, wherein a first metadata version is associ-
ated with the object;
fulfilling the first set of one or more first requests by per-
forming one or more first database operations associated
with the one or more first requests against the object;

while the first metadata version associated with the object
is being maintained for the one or more first requests,
receiving a second set of one or more second requests to
operate on the object, wherein a second metadata ver-
sion is associated with the object,

wherein the first metadata version is obsolete and the sec-

ond metadata version is not obsolete, the first metadata
version and second metadata version concurrently exist
for the object on the system so that the one or more first
requests finish the one or more first database operations
using the first metadata version while the one or more
second requests uses the second metadata version;

5

25

30

35

40

45

50

55

60

65

10

fulfilling the second set of one or more second requests by
performing one or more second database operations
associated with the one or more second requests against
the object;
maintaining, by using a processor, the first metadata ver-
sion and the second metadata version with a dependency
reference to track dependent objects accessing the first
metadata version, wherein the act of maintaining com-
prises: marking a state of the first metadata version to
indicate a lack of the dependent objects;
deleting the first metadata version associated with the
object if the state of the first metadata version is marked
so that the first metadata version no longer needs to be
maintained for the first set of one or more first requests to
perform the one or more first database operations asso-
ciated with the one or more first requests; and

avolatile or non-volatile computer usable medium for stor-
ing the second metadata version or a display device for
displaying the second metadata version.

9. The system of claim 8, wherein the processor is further
configured for:

determining that at least one of the one or more second

requests is a write request;

modifying a persistent metadata version based at least in

part upon the write request; and

creating a new metadata version based at least in part upon

the modified persistent metadata.

10. The system of claim 8, wherein the processor is further
configured for:

determining that at least one of the one or more second

requests is a read request;

locating the second metadata version for the resource; and

determining that the second metadata version for the

resource is not obsolete.

11. The system of claim 8, wherein the processor is further
configured for:

determining that at least one of the one or more second

requests for the resource is a read request; and

creating the second metadata version.

12. The system of claim 8, wherein maintaining further
comprises:

allocating memory consumed by the second metadata ver-

sion;

determining that the second metadata version is not obso-

lete; and

continuing to use previously allocated memory consumed

by the second metadata version.

13. The system of claim 8, wherein the processor is further
configured for:

allocating memory consumed by the second metadata ver-

sion;

determining that the first metadata version has no linked

dependent objects;

determining that the first metadata version is obsolete; and

releasing previously allocated memory consumed by the

first metadata version.

14. The system of claim 13, wherein the processor is fur-
ther configured for:

marking a state of the first metadata version to indicate a

lack of the linked dependent objects.

15. A computer program product embodied on volatile or
non- volatile computer usable medium, the computer usable
medium having stored thereon a sequence of instructions
which, when executed by a processor, causes the processor to
execute a method for managing versions of metadata on a
system, the method comprising:

US 8,005,792 B2

11

receiving a first set of one or more first requests to operate
on an object, wherein a first metadata version is associ-
ated with the object;
fulfilling the first set of one or more first requests by per-
forming one or more first database operations associated
with the one or more first requests against the object;
while the first metadata version associated with the object
is being maintained for the one or more first requests,
receiving a second set of one or more second requests to
operate on the object, wherein a second metadata ver-
sion is associated with the object,
wherein the first metadata version is obsolete and the sec-
ond metadata version is not obsolete, the first metadata
version and second metadata version concurrently exist
for the object on the system so that the one or more first
requests finish the one or more first database operations
using the first metadata version while the one or more
second requests uses the second metadata version;
fulfilling the second set of one or more second requests by
performing one or more second database operations
associated with the one or more second requests against
the object;
maintaining, by using a processor, the first metadata ver-
sion and the second metadata version with a dependency
reference to track dependent objects accessing the first
metadata version, wherein the act of maintaining com-
prises: marking a state of the first metadata version to
indicate a lack of the dependent objects;
deleting the first metadata version associated with the
object if the state of the first metadata version is marked
so that the first metadata version no longer needs to be
maintained for the first set of one or more first requests to
perform the one or more first database operations asso-
ciated with the one or more first requests; and
storing the second metadata version or displaying the sec-
ond metadata version on a display device.
16. The computer program product of claim 15, further
comprising:
linking a dependent object to the second metadata version
comprises:
determining that at least one of the second one or more
requests is a write request;
modifying a persistent metadata version based at least in
part upon the write request; and
creating a new metadata version based at least in part upon
the modified persistent metadata.
17. The computer program product of claim 15, further
comprising:
linking a dependent object to the second metadata version
comprises:
determining that at least one of the second one or more
requests is a read request;
locating the second metadata version for the resource; and
determining that the second metadata version for the
resource is not obsolete.
18. The computer program product of claim 15, further
comprising:
linking a dependent object to the second metadata version
comprises:
determining that at least one of the second one or more
requests is a read request; and
creating the second metadata version.
19. The computer program product of claim 15, further
comprising:
allocating memory consumed by the second metadata ver-
sion;

w

20

25

30

40

45

50

55

12

determining that the second metadata version is not obso-

lete; and

continuing to use previously allocated memory consumed

by the second metadata version.

20. The computer program product of claim 15, further
comprising:

allocating memory consumed by the second metadata ver-

sion;

determining that the first metadata version has no linked

dependent objects;

determining that the first metadata version is obsolete; and

releasing previously allocated memory consumed by the

first metadata version.

21. The computer program product of claim 20, the method
further comprising:

marking a state of the first metadata version to indicate a

lack of linked dependent objects.

22. A system for managing obsolete versions of metadata
comprising:

storage for storing metadata versions of an object, the

storage is associated with a search and create process to
locate and create the metadata versions for the object;
and
a processor for executing an aging-out process to maintain
or release obsolete versions of metadata using a depen-
dency reference to track dependent objects accessing the
metadata versions, the aging-out process comprises:

determining if one of the metadata versions of the object
has any dependent objects that are in use by marking a
state of the one of the metadata versions to indicate a
lack of the dependent objects; and

deleting the one of the metadata versions of the objectifthe

dependent objects are no longer in use after completing
a request to perform one or more database operations
corresponding to the dependent object.

23. The system of claim 22, further comprising a viewing
module (0 view any active meladala versions.

24. A computer program product embodied on volatile or
non- volatile computer usable medium, the computer usable
medium having stored thereon a sequence of instructions
which, when executed by a processor, causes the processor to
execute a method for managing obsolete versions of metadata
on a system, the method comprising:

searching and creating to locate and create metadata ver-

sions for an object;
aging-out obsolete versions of metadata using a depen-
dency reference to track dependent objects accessing the
metadata versions, the act of aging-out comprises:

determining if one of the metadata versions of the object
has any dependent objects that are in use by marking a
state of the one of the metadata versions to indicate a
lack of the dependent objects; and

deleting the one of the metadata versions of the objectifthe

dependent objects are no longer in use after completing
a request to perform one or more database operations
corresponding to the dependent object; and

storing the metadata versions or displaying the metadata

versions on a display device.

25. The computer program product of claim 24, the method
further comprising:

viewing any active metadata versions.

26. A computer implemented method for managing obso-
lete versions of metadata on a system comprising:

searching and creating to locate and create metadata ver-

sions for an object;

US 8,005,792 B2

13 14
aging-out obsolete versions of metadata with a dependency a request to perform one or more database operations
reference to track dependent objects accessing the meta- corresponding to the dependent object; and
data versions, the act of aging-out comprises: storing the metadata versions in a volatile or non-volatile
determining if one of the metadata versions of the object computer usab}e medlum or displaying the metadata
5 versions on a display device.

has any dependent objects that are in use by marking a
state of the one of the metadata versions to indicate a
lack of the dependent objects; and

27. The computer implemented method of claim 26, fur-
ther comprising:

] . o viewing any active metadata versions.
deleting the one of the metadata versions of the object if the

dependent objects are no longer in use after completing ¥ % % % %

